
Parallax, Inc. • BASIC Stamp Editor 2.0 – Beta 1 • 01/2003 1

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

General: info@parallaxinc.com
Technical: support@parallaxinc.com
Web Site: www.parallaxinc.com
Educational: www.stampsinc lass.com

BASIC Stamp Editor / Development System
Version 2.0 Beta – Release 1

Introduction

The Parallax BASIC Stamp Editor / Development System, Version 2.0 was created to enhance the PBASIC
programming language and programming the BASIC Stamp®. To this end, many features considered
standard in other (desktop) versions of BASIC have been incorporated into PBASIC (a purely embedded
language). The enhancements to the PBASIC programming language are collectively called PBASIC 2.5.

Disclaimer

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any
breach of warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or
replacement of equipment or property, and any costs of recovering, reprogramming, or reproducing any
data stored in or used with Parallax products.

Purpose

The purpose of this document is to describe and demonstrate the new features of the PBASIC 2.5 as
supported BASIC Stamp Editor / Development System Version 2.0 (Beta). By design, this document is
concise, yet complete enough for the experienced PBASIC programmer to take advantage of the new
language features.

If you are new to PBASIC and BASIC Stamp programming, we suggest you wait for the final, fully
documented release of this product. The full release will provide context-sensitive online help of all
features.

Support

For answers to your questions and to give feedback about the new PBASIC 2.5 features, please send an
e-mail to:

 pbasic25beta@parallax.com

As this product is NOT FULLY RELEASED, please do not call Parallax customer service or post your
questions or comments to any of the public BASIC Stamp lists (on Yahoo! Groups or Parallax web site).
The only way to ensure getting you question answered or to have your feedback evaluated is send it to
the e-mail address above.

Parallax, Inc. • BASIC Stamp Editor 2.0 – Beta 1 • 01/2003 2

PBASIC 2.5 Update Overview

• $PBASIC directive
• PIN type
• New DEBUG control characters
• DEBUGIN
• Line continuation for comma-delimited lists
• IF…THEN…ELSE
• SELECT…CASE
• DO…LOOP
• EXIT to terminate loops
• ON…GOSUB
• ON…GOTO
• READ / WRITE enhanced
• Program labels require colon

$PBASIC Directive

In order to enable new language features and to allow existing programs to compile as-is, a $PBASIC
directive has been created. To compile programs that use only PBASIC 2.0 features, this directive may
be omitted. To enable new features, the 2.5 directive is required.

' {$PBASIC 2.0} ' optional – use 2.0 features

' {$PBASIC 2.5} ' enable version 2.5 features

PIN Type

The PIN type definition simplifies programs where the same I/O pin is used as an input and output by
allowing the compiler to determine whether the pin value required for a given command is a numeric
constant (i.e., 0), input variable bit (i.e., In0) or output variable bit (i.e., Out0).

Example Syntax and Use:

SDA PIN 8
SCL PIN 9

I2C_Start:
 INPUT SDA ' make pins inputs
 INPUT SCL
 LOW SDA ' make pin output low

Clock_Hold:
 DO : LOOP WHILE (SCL = 0) ' monitor input bit
 RETURN

Parallax, Inc. • BASIC Stamp Editor 2.0 – Beta 1 • 01/2003 3

New DEBUG Control Characters

Note: These new control characters may only work properly within the BASIC Stamp development
system, and not with external applications (i.e., HyperTerminal). The number in parenthesis is the
numeric value of the string constant.

• CRSRXY (2) Move to cursor to X, Y (X-byte and Y-byte follow command)
• CRSRLF (3) Move cursor position left
• CRSRRT (4) Move cursor position right
• CRSRUP (5) Move cursor position up one line
• CRSRDN (6) Move cursor position down one line
• LF (10) Linefeed character
• CLREOL (11) Clear all characters to the end of current line
• CLRDN (12) Clear all characters from the current position to the end of window

Example:

 DEBUG CRSRXY, 1, 1
 DEBUG "BASIC Stamp Editor Version 2.0", CR

This example moves the cursor to the second line, second column and prints a string. The values that
follow CRSRXY are zero-indexed (0, 0 is the first line, first column).

DEBUGIN

To facilitate user input from the DEBUG terminal the DEBUGIN keyword has been added. This works
identically to SERIN, but does not require the user to specify the pin (fixed to PIN 16), baud rate (fixed to
9600 baud, the standard DEBUG baud) or the use of brackets to enclose modifiers or input variables.

DEBUGIN uses the same serial formatting modifiers as DEBUG, SERIN, and SEROUT.

Example:

Get_Hours:
 DEBUG Home, "Enter hours: ", CLREOL
 DEBUGIN DEC hrs
 IF (hrs > 23) THEN Get_Hours

Line Continuation

Any line of code can be continued onto the next line by breaking the first line just after the comma (,)
separating arguments or list items.

Examples:

 DEBUG "Hello, World", CR,
 "PBASIC 2.5 is ready for action!"

Parallax, Inc. • BASIC Stamp Editor 2.0 – Beta 1 • 01/2003 4

 BRANCH idx, [Target1, Target2, Target3,
 Target4, Target5, Target5]

 SELECT idx
 CASE 1, 2, 6,
 10, 11, 12
 HIGH 0

 CASE 3, 4, 5,
 13, 14, 15
 HIGH 1
 ENDSELECT

IF…THEN…ELSE

PBASIC 2.5 includes a standardized IF…THEN…ELSE decision structure. The general syntax may take
either of two forms as follows (items in curly braces {} are optional):

 IF condition(s) THEN
 statement(s)
{ ELSE
 statement(s) }
 ENDIF

 IF condition(s) THEN statement(s) { ELSE statement(s) }

Notes:

• Multiple statements may be included in the THEN or ELSE blocks of the single-line syntax by
separating each statement with a colon (:).

• ENDIF is not used when using the single-line syntax.
• Up to 16 IF…THEN…ELSE structures may be nested.

Examples:

 IF (score > 90) THEN
 DEBUG "Your grade is an A!", CR
 ELSE
 DEBUG "Perhaps more study is in order...", CR
 ENDIF

IF (idx = 1) THEN HIGH 10 : LOW 11 ELSE LOW 10 : HIGH 11

SELECT…CASE

SELECT…CASE can be used to cleanly replace multiple IF…THEN…ELSE structures. The PBASIC syntax
for SELECT…CASE is (| denotes mutually-exclusive items):

 SELECT expression
 CASE | TCASE ELSE | condition(s)
 statement(s)
 ENDSELECT

Parallax, Inc. • BASIC Stamp Editor 2.0 – Beta 1 • 01/2003 5

Notes:

• expression can be a variable, a constant or an expression.
• condition can be in the form:

 {condition-op} #

 -- where condition-op is an optional conditional operator: =, <>, <, >, >= or <=
 -- # is a variable, a constant or an expression

or…

 # TO #

 -- Indicates a range of the first number to the next number, inclusive
 -- Conditional operators are not allowed in this form.

• Multiple conditions within the same case can be separated by commas (,).
• When a CASE is True, the default function is for the CASE's statement(s) to be executed, then

program execution jumps to the first statement following ENDSELECT.
• TCASE, meaning “Through CASE”, behaves exactly like CASE, except that it causes the previous

CASE (if executed) to continue program execution at the first statement within the TCASE,
instead of jumping to after the ENDSELECT. After execution of the statements within TCASE,
execution jumps to after ENDSELECT, unless followed by another TCASE.

Example:

 SELECT irCmd
 CASE 0 TO 3
 HIGH irCmd

 CASE AllOff, Mute
 OutA = %0000

 CASE ELSE
 DEBUG "Bad Command", CR
 ENDSELECT

DO…LOOP

PBASIC 2.5 now includes a standardized looping construct that takes the general form:

 DO { WHILE | UNTIL condition(s) }
 statement(s)
 LOOP { UNTIL | WHILE condition(s) }

The condition statement can be setup to cause the loop to run for a specific number of iterations, while
or until a condition becomes true, or indefinitely if no condition is applied. Up to 16 DO…LOOPs may be
nested.

Parallax, Inc. • BASIC Stamp Editor 2.0 – Beta 1 • 01/2003 6

Examples:

 DO
 TOGGLE AlarmPin
 PAUSE 100
 LOOP

 DO WHILE (StatusPin = Okay)
 StatusLED = IsOn
 PAUSE 100
 LOOP

In the example above, the condition will be tested before the loop code is executed.

In the next example, the loop code will run at least once because the condition test happens at the end.

 DO
 AlarmLED = IsOn
 PAUSE 1000
 LOOP UNTIL (OvenTemp < ResetThreshold)

EXIT

EXIT causes the immediate termination of a FOR…NEXT or DO…LOOP. Up to 16 EXITs may be placed in
a loop structure.

Example:

 FOR samples = 1 TO 10
 GOSUB Read_Temp
 GOSUB Display_Temp
 IF (temp > 100) THEN EXIT
 PAUSE 1000
 NEXT

In the example above the loop will run 10 times unless the temperature reading exceeds 100 which will
cause the FOR…NEXT loop to terminate.

ON…GOSUB

ON…GOSUB has been added for compatibility with other versions of BASIC and is very similar to the
PBASIC BRANCH command except that the address of the following line is stored and a targeted GOSUB
is executed based on an offset value. If the offset value is greater than the range of target addresses,
code will continue on the next line.

The general syntax is:

 ON offset GOSUB Target0 {, Target1, Target2, ...TargetN }

Parallax, Inc. • BASIC Stamp Editor 2.0 – Beta 1 • 01/2003 7

Notes:
• offset is a variable/constant/expression (0 - 255) that specifies the index of the address, in the

list, to branch to (0 - N).
• ON...GOSUB will ignore any list entries beyond offset 255.

Example:

 DO
 ON task GOSUB Update_Motors, Read_IR, Read_Light, Read_Temp
 task = task + 1 // NumTasks
 LOOP

ON…GOTO

ON…GOTO has been added for compatibility with other versions of BASIC and is the functional equivalent
of the PBASIC BRANCH command, with this syntax:

 ON offset GOTO Target0 {, Target1, Target2, ...TargetN }

Notes:

• offset is a variable/constant/expression (0 - 255) that specifies the index of the address, in the
list, to branch to (0 - N).

• ON...GOTO will ignore any list entries beyond offset 255.

Example:

 ON alarmLevel GOTO Code1, Code2, Code3

which is the same as:

 BRANCH alarmLevel, [Code1, Code2, Code3]

READ and WRITE Enhancements

READ and WRITE have been enhanced to allow each to work with Bytes or Words, and to allow multi-
variable READs or WRITEs with one line of code. The enhanced syntax is:

 READ location, {Word} variable {, {Word} variable, {Word} variable, ... }
 WRITE location, {Word} variable {, {Word} variable, {Word} variable, ... }

Examples:

 READ 0, hours, minutes, seconds

 WRITE 3, month, day, Word year

When the (optional) Word parameter is used, values are read or written low-byte, then high-byte ("Little-
Endian").

Parallax, Inc. • BASIC Stamp Editor 2.0 – Beta 1 • 01/2003 8

Program Labels Require Colon (:)

PBASIC 2.5 requires program labels (for GOTO, BRANCH, etc.) to be terminated with a colon (:). Labels
without a colon will generate a compile-time error.

Example:

Get_Hours: ' good label
 DEBUG Home, "Enter hours: ", CLREOL
 DEBUGIN DEC hrs
 IF (hrs > 23) THEN Get_Hours

Get_Mins ' illegal label
 DEBUG Home, "Enter minutes: ", CLREOL
 DEBUGIN DEC mins
 IF (mins > 59) THEN Get_Mins

